Climate Impacts on Annual-Average Airborne Particle Source Contributions in California

Abdullah Mahmud, Mark Hixson, and Michael J. Kleeman Department of Civil and Environmental Engineering

Zhan Zhao, Jianlin Hu, and Shu-Hua Chen Atmospheric Science

University of California at Davis

Annual average PM2.5 concentration 2006

Source: US EPA (http://www.epa.gov/air/airtrends/2007/report/particlepollution.pdf).

98th percentile PM2.5 concentrations (24-hr average) measured in United States counties for the years 2005-07

Values below the NAAQS (35 μg m⁻³) are not shown. Data accessed from http://www.epa.gov/airtrends/values.html August 1, 2009.

Source: M. Hixson, A. Mahmud, J.Hu, S. Bai, D. Niemeier, S.L. Handy, S. Gao, J. R. Lund, D. Coe Sullivan, and M.J. Kleeman1. "Influence of Regional Development Policies and Clean Technology Adoption on Future Air Pollution Exposure", Atmospheric Environment, submitted for publication, 2009.

California's Major Air Basins

California Facts:

Top 10 world economy
Highest point in continental US
Lowest point in continental US

Approach

- Dynamic Downscaling of PCM results using WRF (CARB project#04-349)
 - 2000-06; 2047-53 (126 days simulated each year)
 - SJV summer (O3) and winter (PM)
 - SoCAB summer (O3) and fall (PM)
- Future Emissions Inventory Projection (EPA project#RD83184201)
 - SJV 2030 and 2050; SoCAB 2050
- Air Quality Simulations for 28 years
 - Current emissions with present + future meteorology
 - Future emissions with present + future meteorology
 - UCD source-oriented air quality model
 - ISORROPIA II Fountoukis and Nenes (2007)
 - Dynamic gas to particle conversion Jacobson (2005)

Temperature and Humidity Changes 2047-53 vs. 2000-06

Other Meteorological Changes 2047-53 vs. 2000-06

Basecase Emissions

PM2.5 Mass Change 2047-53 vs. 2000-06

Basecase PM2.5 (μ g/m³)

 Δ PM2.5 (μ g/m³)

Comparison to Measured Values 2000-06

PM2.5 NO₃ Change 2047-53 vs. 2000-06

Basecase PM2.5 Nitrate (μg/m³)

 Δ PM2.5 Nitrate (µg/m³)

PM2.5 SO₄²⁻ Change 2047-53 vs. 2000-06

$\Delta \text{ PM}2.5 \text{ SO}_4^{2-} (\mu \text{g/m}^3)$

PM2.5 OC Change 2047-53 vs. 2000-06

Particle Aging Separates Particles Emitted From the Same Source at Different Times

Source-Oriented External Mixture

Changes to PM2.5 Primary Source Contributions

Changes to PM2.5 Secondary Nitrate Source Contributions

Uncertainty Associated With Number of Averaging Years

Conclusions: Climate Effects on Airborne Particle Mass in California

- Between 2047-53 and 2000-06
 - Increased T encourages evaporation of NH₄NO₃
 - Increased wind speed and mixing depths provide more dilution
 - PM2.5 increases in northern California
 - PM2.5 decreases in southern California
- Seven year analysis window is not quite long enough to reject the null hypothesis
 - H0: \triangle PM2.5=0 (no change) with P<0.05
- Need to repeat analysis using multiple, GCMs, meteorological, emissions, and air quality models: "weight of evidence" approach

Acknowledgements

- California Air Resources Board Contract # 04-349
- United States Environmental Protection Agency Science to Achieve Results (STAR) grant # RD-83184201
- Nehzat Motallebi (CARB)
- Thanos Nenes (Georgia Tech)
- Dan Cayan, Mary Tyree, Martha Coakley, Josh Shiffrin (UCSD)

EXTRA SLIDES

Ozone Concentrations in the US

Ozone concentrations in ppm, 2006 (fourth highest daily maximum 8-hour concentrations).

Source: US EPA (http://www.epa.gov/air/airtrends/2007/report/groundlevelozone.pdf).

How Will Climate Change Affect Air Quality?

- Air pollution events occur when meteorology traps emissions close to the surface
- Climate change will affect multiple variables simultaneously
 - Temperature, relative humidity, wind speed, mixing depth, cloud cover, precipitation, etc.

Air Quality Model

Source: Prakash Bhave, US EPA

Particle Aging Separates Particles Emitted From the Same Source at Different Times

Aged **Particles**

Fresh **Emissions**

Crustal Material Other than Paved Road Dust

Paved Road Dust

Diesel Engines

Anticipated Future Trends

CONTINENTAL SURFACE TEMPERATURE ANOMALIES:

OBSERVATIONS AND PROJECTIONS

Source: IPCC Fourth Assessment

Basecase Emissions

PM2.5 NH₄+ Change

Basecase PM2.5 NH_4^+ (µg/m³)

 $\Delta \text{ PM2.5 NH}_{4}^{+} (\mu \text{g/m}^{3})$

PM2.5 EC Change

Δ PM2.5 EC (μ g/m³)

